Alignment-free sequence comparisons using *k*-word matches

Sue Wilson Hilary Booth Ruth Kantorovitz Conrad Burden Sylvain Forêt Junmei Jing A common problem in biology is sequence matching: finding a DNA sequence or a protein sequence in a data base that is a 'close' match to a given query sequence:

TCCGCGCTGCAAG...

CCGGGGCGCCCT...

CCCGCGGCCCCGAT... CCCGCGGCCCCGAT... CCCGCGGCCCCGAT... CCCCCCGCGCCCCG... CCCCCCGCGCCCCG... CCCCCCGCTCTC... GCAATCTGCATG... GCCGCCTCCGTACC... CCCGCGCCCCGTACC...

- Used, for example, to identify homologous genes or proteins in one species or genes related by a common ancestor in different species
- Don't just want to know whether sequences are related, but need a measure of similarity (or dissimilarity)
- Assign a p-value based on a null hypothesis that two sequences being compared are unrelated
- Simplest null hypothesis is that the sequences are strings of independently and identically distributed letters from a given alphabet

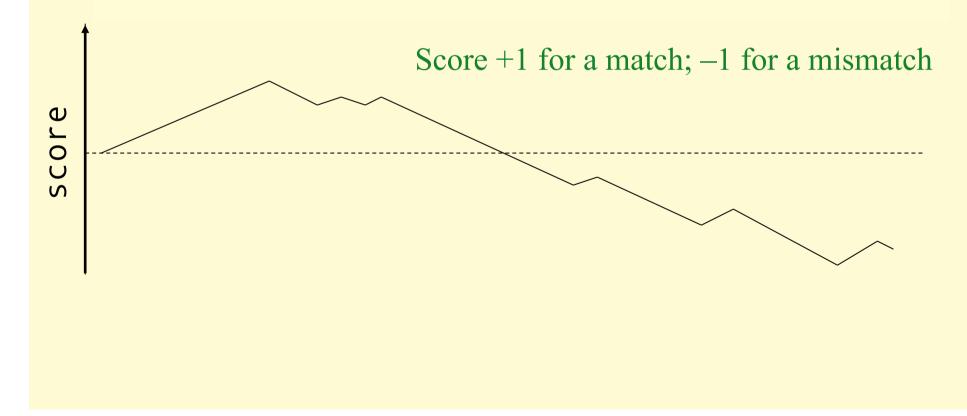
In biology, the most commonly used algorithms for sequence comparison are <u>alignment-based</u> algorithms, e.g. BLAST.

(Basic Local Alignment Search Tool)

BLAST looks for long alignments and relies on the theory of random walks:

A T G C T T T G C T A G C G C T A G C A T G C T T T C G C A A A C T C A T

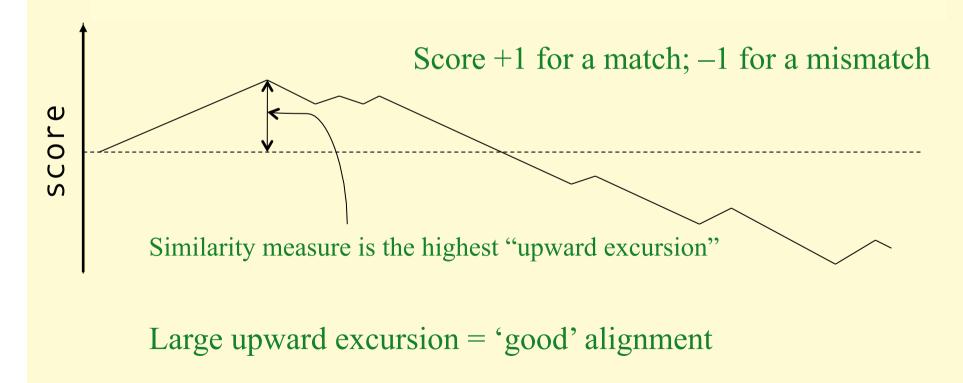
A T G C T T T T A A A A C C G A G C T G G T C A C A A G C G C T A A C A A



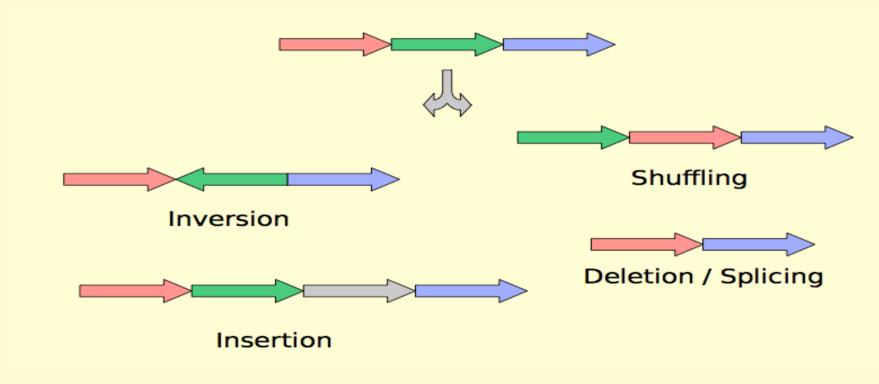
BLAST looks for long alignments and relies on the theory of random walks:

A T G C T T T G C T A G C G C T A G C A T G C T T T C G C A A A C T C A T

A T G C T T T T A A A A C C G A G C T G G T C A C A A G C G C T A A C A A



Alignment-based sequence comparisons assume contiguity between related sequences. But the process of evolution may involve rearrangements of sections of the genome, and the process of translating genes to proteins may involve alternate deletions and splicings



The assumption of contiguity is not always appropriate!

Alignment-free methods:

There are many (distance methods, covariance methods, information theory based measures, angle metrics, ...)

We have been studying <u>k-word matches and the D_2 statistic</u>

<u>Definition</u>: Given two sequences $\mathbf{A} = (A_1, A_2, ..., A_m)$ and $\mathbf{B} = (B_1, B_2, ..., B_n)$, D_2 is the number of matches of words (including overlaps) of prespecified length k between two given sequences <u>Definition</u>: Given two sequences $\mathbf{A} = (A_1, A_2, ..., A_m)$ and $\mathbf{B} = (B_1, B_2, ..., B_n)$, D_2 is the number of matches of words (including overlaps) of prespecified length k between two given sequences

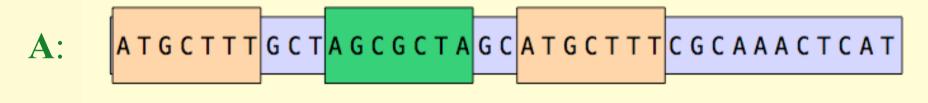
Example: consider these two sequences and $k = 7 \dots$

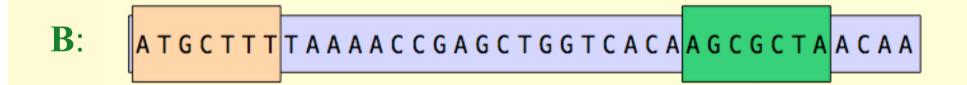
B: ATGCTTTTAAAACCGAGCTGGTCACAAGCGCTAACAA

<u>Definition</u>: Given two sequences $\mathbf{A} = (A_1, A_2, ..., A_m)$ and $\mathbf{B} = (B_1, B_2, ..., B_n)$,

 D_2 is the number of matches of words (including overlaps) of prespecified length *k* between two given sequences

Example: consider these two sequences and $k = 7 \dots$



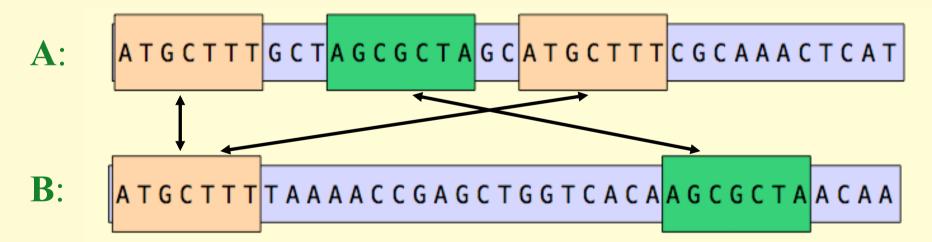


Definition: Given two sequences

 $\mathbf{A} = (A_1, A_2, ..., A_m)$ and $\mathbf{B} = (B_1, B_2, ..., B_n)$,

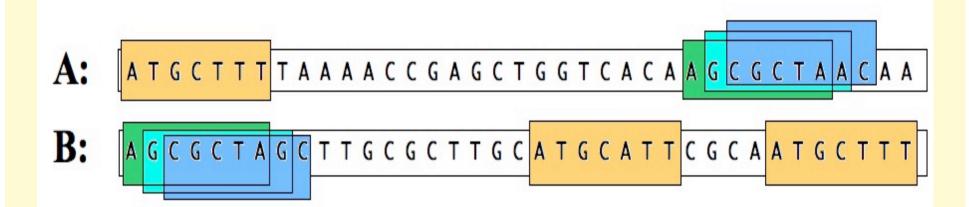
 D_2 is the number of matches of words (including overlaps) of prespecified length *k* between two given sequences

Example: consider these two sequences and $k = 7 \dots$



In this example, for k = 7, $D_2 = 3$

Also of interest is the approximate word count: <u>Definition</u>: Given two sequences $\mathbf{A} = (A_1, A_2, \dots, A_m)$ and $\mathbf{B} = (B_1, B_2, \dots, B_n)$, $D_2^{(t)}$ is the number of matches of words of prespecified length *k* with up to *t* mismatches Also of interest is the approximate word count: <u>Definition</u>: Given two sequences $\mathbf{A} = (A_1, A_2, ..., A_m)$ and $\mathbf{B} = (B_1, B_2, ..., B_n)$, $D_2^{(t)}$ is the number of matches of words of prespecified length *k* with up to *t* mismatches



In this example, for $k = 7, t = 1, D_2 = 5$

Performance:

For sequences of length m and n,

- D_2 has algorithmic complexity O(m + n) ... fast!
- $D_2^{(t)}$ is at worst $O(m^*n)$... somewhat slower

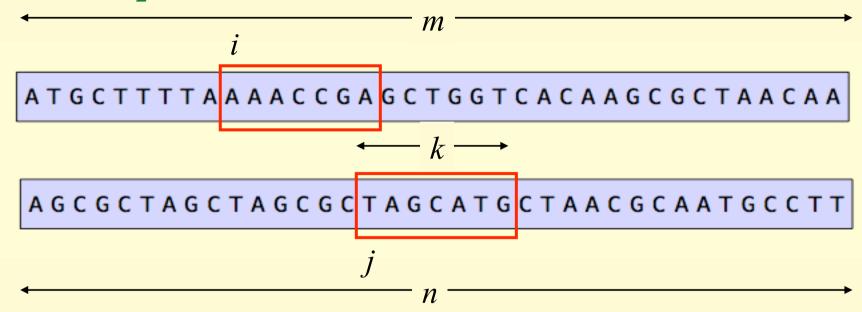
But to assess whether a match is significant, we need knowledge of the distribution of these measures under a suitable null hypothesis

What do we know about the distribution of D_2 and $D_2^{(t)}$?

Although we do not have an exact formula for the distribution of D_2 , we are able to derive <u>for sequences of i.i.d. letters</u>

- The means $E(D_2)$ and $E(D_2^{(t)})$
- The variance $Var(D_2)$ and, for a <u>uniform</u> letter distribution $Var(D_2^{(t)})$
- A fast, accurate numerical algorithm for $Var(D_2^{(t)})$ for a non-uniform letter distribution
- The limiting distribution of D_2 as the sequence length $n \rightarrow \infty$ for $k < 1/2 \log n$ or $k > 2 \log n$
- The limiting distribution of $D_2^{(t)}$ as the sequence length $n \rightarrow \infty$ for $k < 1/2 \log n$
- An accurate empirical fit to the distribution for bilogically relevant values of *n*, *k* and *t*.

Mean of D_2 for i.i.d. sequences (Waterman, 1995):



Let probability of letter at given site be f_a , $a \in \{C, A, G, T\}$

Set indicator variable $Y_{ij} = 1$ if *k*-word at *i* matches *k*-word at *j*, 0 otherwise

Then $E(Y_{ij}) = Prob(Y_{ij} = 1) = (\sum_a f_a^2)^k$, so

 $E(D_2) = E(\sum_{i,j} Y_{ij}) = \sum_{i,j} E(Y_{ij}) = (m - k + 1)(n - k + 1)(\sum_{i,j} f_i^2)^k$

The variance of D_2 is much harder:

$$\operatorname{Var}(D_{2}) = \operatorname{Var}\left(\sum_{i,j} Y_{ij}\right) = \operatorname{E}\left(\left(\sum_{i,j} Y_{ij}\right)^{2}\right) - \left(\operatorname{E}\left(\sum_{i,j} Y_{ij}\right)\right)^{2}$$
$$= \sum_{i,j;i',j'} \operatorname{Cov}(Y_{ij}, Y_{i'j'}) - \mu_{D_{2}}^{2}$$

but $Cov(Y_{ij}, Y_{i'j'})$ is difficult to calculate when there are overlaps

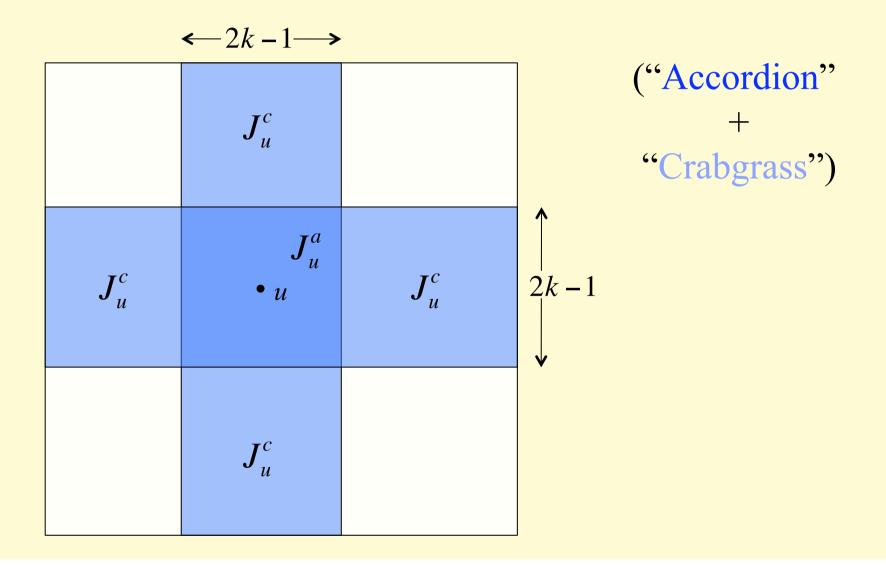
$$i \qquad i'$$

$$A T G C T T T T T A A A C C G A G C T G G T C A C A A G C G C T A A C A A$$

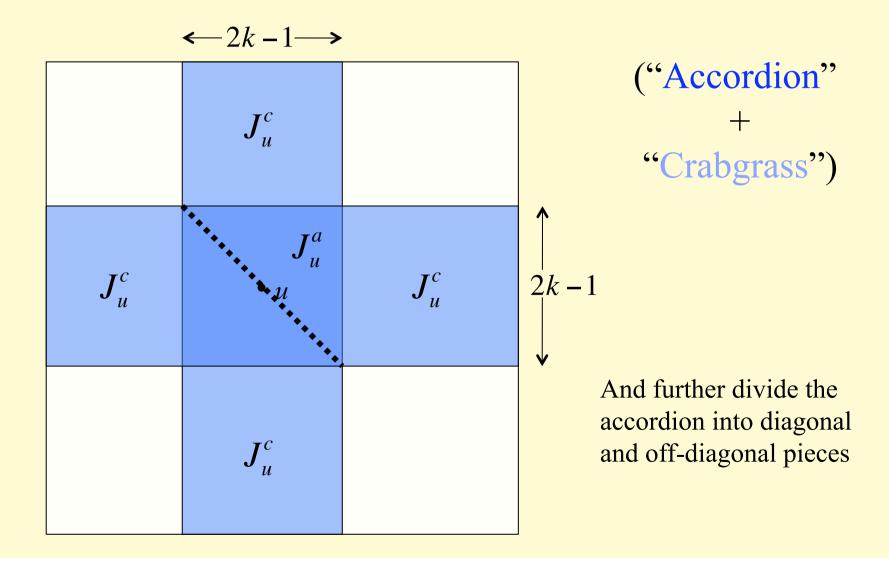
$$A G C G C T A G C T A G C G C T A G C A T G C T A A C G C A A T G C C T T$$

$$j' \qquad j$$

To calculate $\text{Cov}(Y_{ij}, Y_{i'j'}) = \text{Cov}(Y_u, Y_v)$, where u = (i, j), v = (i', j'), write the dependency neighbourhood as $J_u = J_u^a + J_u^c$



To calculate $\text{Cov}(Y_{ij}, Y_{i'j'}) = \text{Cov}(Y_u, Y_v)$, where u = (i, j), v = (i', j'), write the dependency neighbourhood as $J_u = J_u^a + J_u^c$



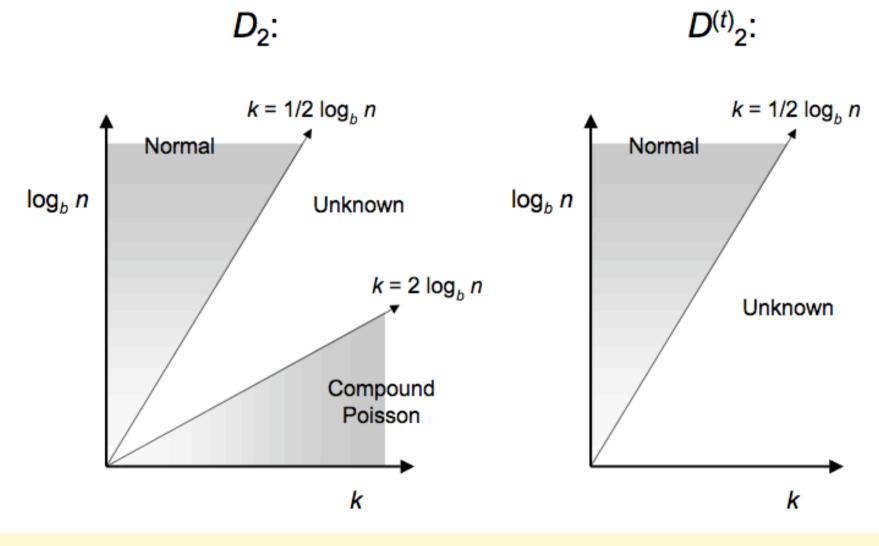
For practical purposes, we can calculate all contributions to the covariance:

	Crabgrass	Diagonal Accordion	Off-diag Accordion
Exact matches, Uniform letter distribution	0	Analytic formula	0
Exact matches, Non-uniform distribution	Analytic formula	Analytic formula	Analytic formula
Approx. matches, Uniform letter distribution	0	Analytic formula	0
Approx. matches, Non-uniform distribution	Analytic formula		ook-up table ers k , t and f_a

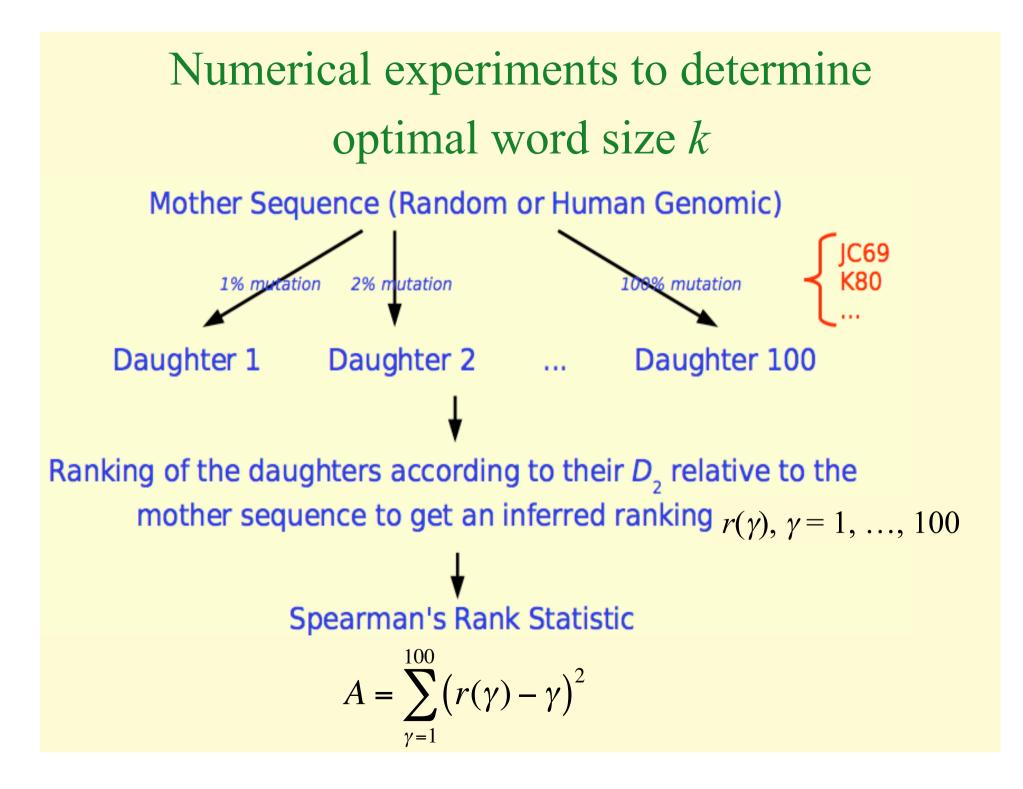
So we can calculate the mean and variance of D_2 and $D_2^{(t)}$ for any set of parameters n, m, k, t and f_a

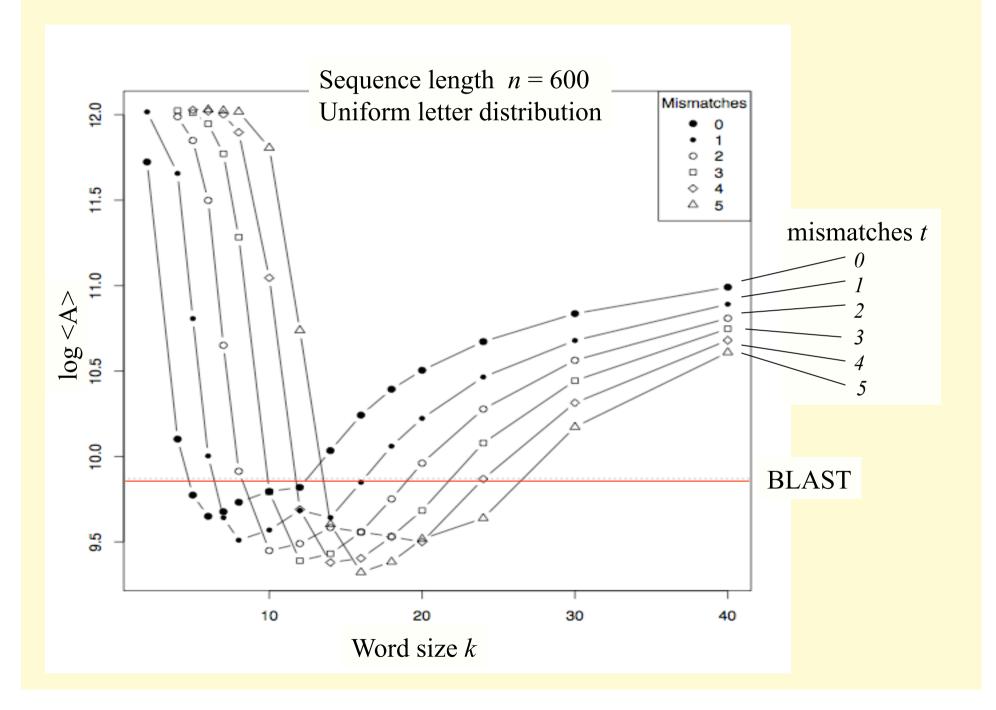
But what about the shape of the distribution

Have proved theorems for the limiting distributions as *n* or $k \rightarrow \infty$:



(Limits taken along lines $k = \text{const.} \times \log_b n$, where $b = (\sum_a f_a^2)^{-1}$)





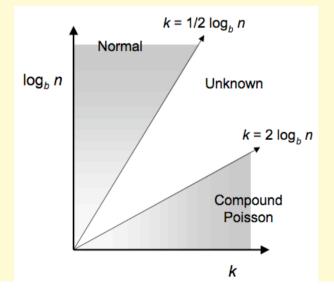
Optimum word sizes

Mismatches	Sequence Lengths							
Mismatches	200	400	800	1600	3200			
0	6	7	7	7	7			
1	8	10	10	10	10			
2	10	12	12	12	12			
3	12	14	14	14	14			
4	14	16	16	16	16			
5	16	18	18	18	18			

Optimum word sizes

Mismatches	Sequence Lengths							
Mismaccies	200 400		800	1600	3200			
0	6	7	7	7	7			
1	8	10	10	10	10			
2	10	12	12	12	12			
3	12	14	14	14	14			
4	14	16	16	16	16			
5	16	18	18	18	18			

For biologically relevent parameter values, optimal word sizes fall outside known limiting cases

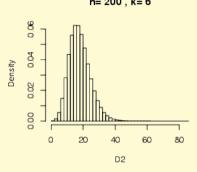


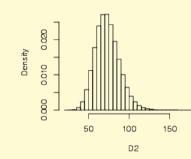
→ Numerical simulations to examine the distribution of D_2 under the assumption of an i.i.d. letter distribution for biologically relevant parameter values: n = 200, k=6 n = 1600, k=6

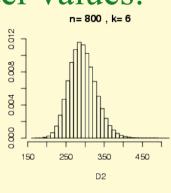
Density

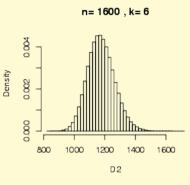
Density

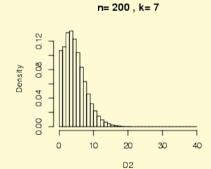
0000

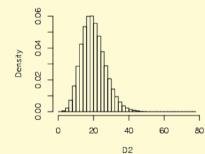












n= 400 , k= 7

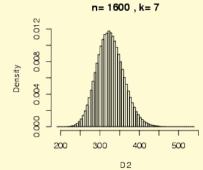
100

D2

n= 800 . k= 7

150

80



0.6

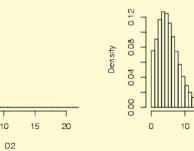
0.4

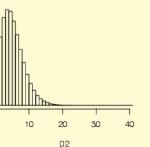
0.2

0.0

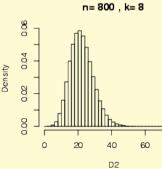
0

Den sity



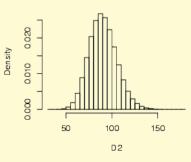


n= 400 , k= 8

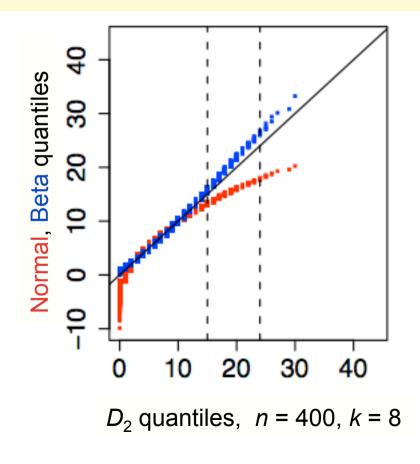


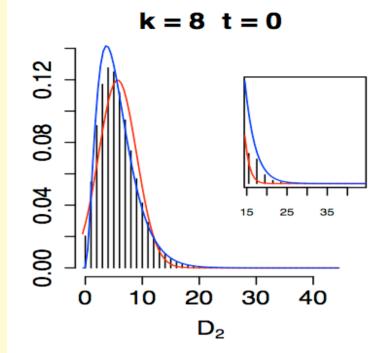
50

n= 1600 , k= 8



Empirical distribution fits well to a Beta distribution with analytically determined $E(D_2)$ and $Var(D_2)...$

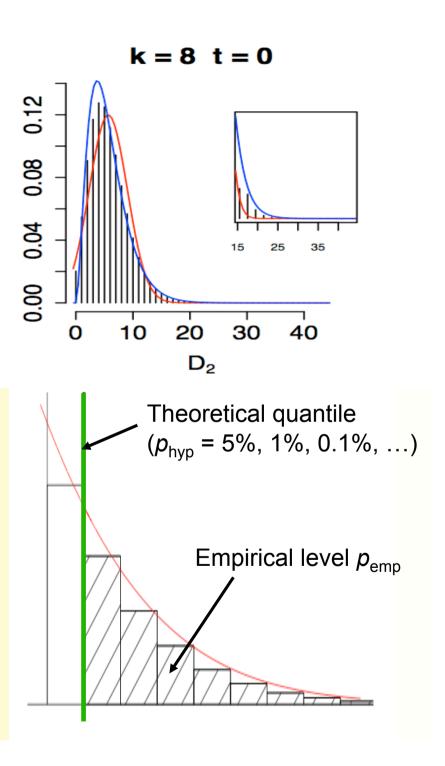




Empirical distribution fits well to a Beta distribution with analytically determined $E(D_2)$ and $Var(D_2)...$

- ...but for accurate p-values the tail of the distribution is important.
- → Measure discrepancy between hypothesised (assuming e.g. Normal or Gamma) and empirical p-values:

$$\delta = \log_{10} (p_{\rm emp} / p_{\rm hyp})$$

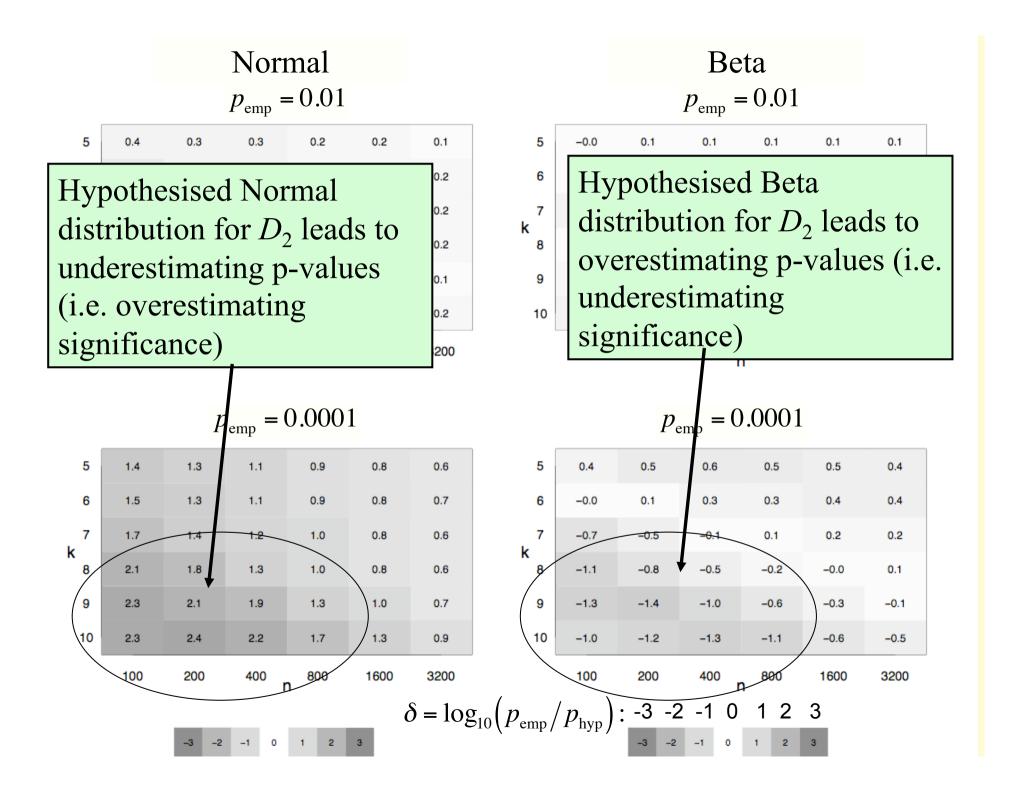


			Nor $p_{emp} =$	mal = 0.01						Be $p_{emp} =$	eta = 0.0
5	0.4	0.3	0.3	0.2	0.2	0.1	5	-0.0	0.1	0.1	0.1
6	0.5	0.4	0.3	0.2	0.2	0.2	6	-0.1	-0.1	0.0	0.1
7	0.7	0.4	0.3	0.2	0.2	0.2	7	-0.3	-0.2	-0.1	0.0
k 8	0.5	0.4	0.4	0.3	0.2	0.2	k 8	0.1	-0.2	-0.3	-0.0
9	0.3	0.5	0.5	0.3	0.3	0.1	9	-0.2	-0.3	-0.1	-0.1
10	0.3	0.4	0.6	0.6	0.3	0.2	10	0.3	-0.1	-0.3	-0.3
	100	200	400	n ⁸⁰⁰	1600	3200	-	100	200	400	n ⁸⁰⁰

			$p_{\rm emp}$ =	= 0.01		
5	-0.0	0.1	0.1	0.1	0.1	0.1
6	-0.1	-0.1	0.0	0.1	0.1	0.1
7	-0.3	-0.2	-0.1	0.0	0.0	0.1
8	0.1	-0.2	-0.3	-0.0	-0.0	0.0
9	-0.2	-0.3	-0.1	-0.1	-0.1	-0.0
0	0.3	-0.1	-0.3	-0.3	-0.1	-0.0
	100	200	⁴⁰⁰ n	800	1600	3200

 $p_{\rm emp} = 0.0001$

		p	$P_{\rm emp} = 0$	0.000	1		$p_{\rm emp} = 0.0001$						
5	1.4	1.3	1.1	0.9	0.8	0.6	5	0.4	0.5	0.6	0.5	0.5	0.4
6	1.5	1.3	1.1	0.9	0.8	0.7	6	-0.0	0.1	0.3	0.3	0.4	0.4
7 k	1.7	1.4	1.2	1.0	0.8	0.6	7 k 8	-0.7	-0.5	-0.1	0.1	0.2	0.2
8	2.1	1.8	1.3	1.0	0.8	0.6		-1.1	-0.8	-0.5	-0.2	-0.0	0.1
9	2.3	2.1	1.9	1.3	1.0	0.7	9	-1.3	-1.4	-1.0	-0.6	-0.3	-0.1
10	2.3	2.4	2.2	1.7	1.3	0.9	10	-1.0	-1.2	-1.3	-1.1	-0.6	-0.5
	100	200	⁴⁰⁰ r	800 n	1600	3200		100	200	⁴⁰⁰ r	800	1600	3200
		-			($\delta = \log \theta$	$g_{10}(p_{emp}/$	$p_{\rm hyp}$: -3 -2	2 -1 0	12	3	
		-3 -2	-1 0	1 2	3				-3 -2	-1 0	1 2	3	



Database test (using database from Kantorowitz, et al., *Bioinf*. 23 249 (2007)): 2 sets of sequences:

 positive control – a set of known cis- regulatory modules (mouse or human)

CACAAGATGAGAAGTTGTGTGTACTTG GCAAACTTAGAGCTGACCTTTGCTGATTTG GAAGTTGAAGATTACCCAACCATTGCA GGTTTATCAGTTCTTTCTTGTTTAT AGGTTGAGTTAATCATA AGAAACAAAACCTACATGACCCTT CTCTTGTTTTTTTATTCATTC ACTGCCAAGAAGC ATGCCAAAGTTAATCATTGG CCCTGCTGAGTACATGGCCGATCAGGC TGTTTTTGTGTGCCTGTTTTTCTATTTAC GTAAATCACCCTGAACATGTTTGCATCAAC CTACTGGTGATGCACCTTTGATCAA

. . .

. . .

Database test (using database from Kantorowitz, et al., *Bioinf.* 23 249 (2007)): 2 sets of sequences:

. . .

 positive control – a set of known cis- regulatory modules (mouse or human)

CACAAGATGAGAAGTTGTGTACTTG GCAAACTTAGAGCTGACCTTTGCTGATTTG GAAGTTGAAGATTACCCAACCATTGCA GGTTTATCAGTTCTTTCTTGTTTAT AGGTTGAGTTAATCATA AGAAACAAAACCTACATGACCCTT CTCTTGTTTTTTTATTCATTC ACTGCCAAGAAGC ATGCCAAAGTTAATCATTGG CCCTGCTGAGTACATGGCCGATCAGGC TGTTTTTGTGTGCCTGTTTTTCTATTTAC GTAAATCACCCTGAACATGTTTGCATCAAC CTACTGGTGATGCACCTTTGATCAA

. . .

. . .

 negative control – a set of sequences of same length chosen randomly from noncoding part of genome

TTTTAGACATTGTGTAGAAGAGTTG GGTAACTTAGAGCTGACCTTTGCTGATTTG GTTTATTACCCGAAGTTAACGTTTGCA TATTTATGTGTTCTTTCTTGTTTATC ATGTAAAGTTAATCATA ATTTTCAAAAGTTAATCATA ATTTTCAAAACCTAGTTGACCCTT CTATGGACTGGTACTCATTC TTCGCGTAGAAGC CAGATGCGCCAAAGTTAATG CGCTGCTGAGTACATGGCCGATGTTAC TCATTCAGTGTGCCTGATTTTCTATTTTAC TGAGTCCACCCTGAAGTTGTTTGCATGTAC TGCACCTTTGATGTACTACTGGTGA • chose each sequence in turn as the 'query sequence'. Attempt to classify it as positive or negative control as follows

. . .

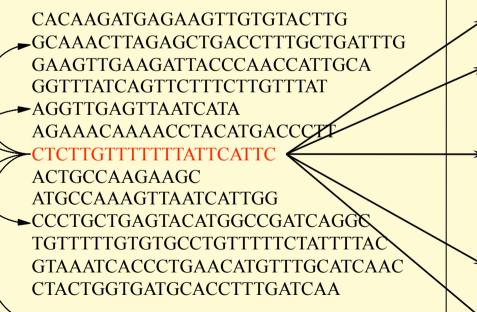
. . .

+

CACAAGATGAGAAGTTGTGTGTACTTG GCAAACTTAGAGCTGACCTTTGCTGATTTG GAAGTTGAAGATTACCCAACCATTGCA GGTTTATCAGTTCTTTCTTGTTTAT AGGTTGAGTTAATCATA AGAAACAAAACCTACATGACCCTT CTCTTGTTTTTTTATTCATTC

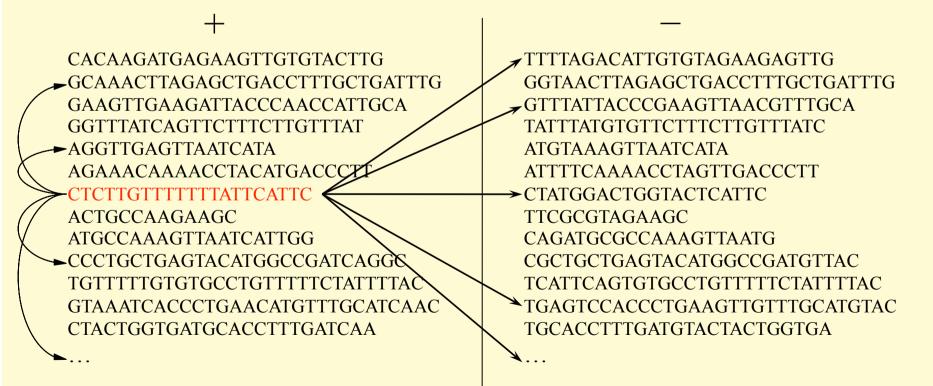
ACTGCCAAGAAGC ATGCCAAAGTTAATCATTGG CCCTGCTGAGTACATGGCCGATCAGGC TGTTTTTGTGTGCCTGTTTTTCTATTTAC GTAAATCACCCTGAACATGTTTGCATCAAC CTACTGGTGATGCACCTTTGATCAA TTTTAGACATTGTGTAGAAGAGTTG GGTAACTTAGAGCTGACCTTTGCTGATTTG GTTTATTACCCGAAGTTAACGTTTGCA TATTTATGTGTTCTTTCTTGTTTATC ATGTAAAGTTAATCATA ATTTTCAAAAGTTAATCATA ATTTTCAAAACCTAGTTGACCCTT CTATGGACTGGTACTCATTC TTCGCGTAGAAGC CAGATGCGCCAAAGTTAATG CGCTGCTGAGTACATGGCCGATGTTAC TCATTCAGTGTGCCTGATTTTCTATTTAC TGAGTCCACCCTGAAGTTGTTGCATGTAC

- chose each sequence in turn as the 'query sequence'. Attempt to classify it as positive or negative control as follows
- measure $D_2^{(t)}$ between query and all other sequences

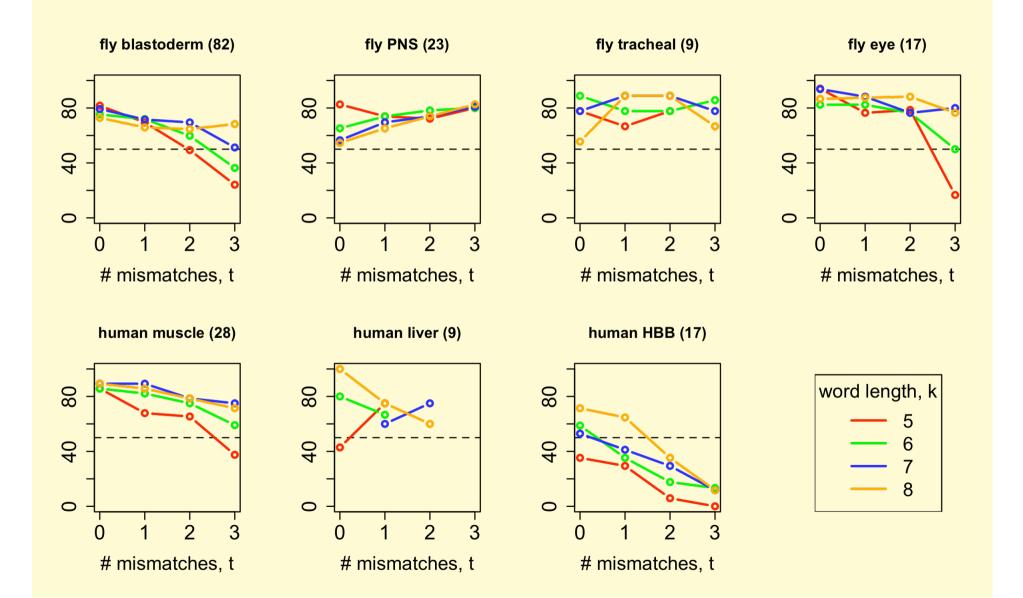


 TTTTAGACATTGTGTAGAAGAGTTG GGTAACTTAGAGCTGACCTTTGCTGATTTG
 GTTTATTACCCGAAGTTAACGTTTGCA TATTTATGTGTTCTTTCTTGTTTATC
 ATGTAAAGTTAATCATA
 ATTTTCAAAACCTAGTTGACCCTT
 CTATGGACTGGTACTCATTC
 TTCGCGTAGAAGC
 CAGATGCGCCAAAGTTAATG
 CGCTGCTGAGTACATGGCCGATGTTAC
 TCATTCAGTGTGCCTGTTTTTCTATTTAC
 TGAGTCCACCCTGAAGTTGACTGGTGA

- chose each sequence in turn as the 'query sequence'. Attempt to classify it as positive or negative control as follows
- measure $D_2^{(t)}$ between query and all other sequences
- convert $D_2^{(t)}$ values to (i.i.d.) null hypothesis p-values
- smallest p-value determines whether query belongs to positive or negative control



Percentage of times (+ve) query sequence is correctly classified using minimum p-value



Conclusions

- The *k*-word count D_2 is a fast and accurate statistic for sequence comparison when alignments are not appropriate
- Approximate word count $D_2^{(t)}$ is slower to calculate, but more accurate, and more appropriate for some applications
- Mean and variance of D_2 and $D_2^{(t)}$ can be computed easily (analytic result for D_2)
- The Beta distribution gives a good empirical estimate of p-values for D_2 , and for its extreme value distribution

Papers

- 'Asymptotic behaviour and optimal word size for exact and approximate word matches between random sequences', S. Forêt, M.R. Kantorovitz and C.J. Burden, *BMC Bioinformatics*, 7 (2006) S21.
- 'Asymptotic behaviour of *k*-word matches between two random sequences', M.R. Kantorovitz, H.S. Booth, C.J. Burden and S.R. Wilson, *J. Appl. Prob*, 44 (2007), 788-805.
- 'Asymptotic behaviour and optimal word size for exact and approximate word matches', S.R. Wilson, and C.J. Burden, *Proc. Appl. Math. Mech.*, 7, 11218101.
- 'Approximate word matches between two random sequences', C.J. Burden, M.R. Kantorovitz and S.R. Wilson, *Ann. Appl. Prob.*, 18 (2008) 1-21.
- 'Empirical distribution of *k*-word matches in bilogical sequences, S. Forêt, S.R. Wilson and C.J. Burden, *Pattern Recgn.*, 42 (2009) 539-548.
- 'Characterising the D₂ statistic: word matches in biological sequences', S. Forêt, S.R. Wilson and C.J. Burden, *Stat. Appl. Gen. Mol Biol.* 8 (2009) Art 43.