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A common problem in biology is sequence 
matching: finding a DNA sequence or a protein 
sequence in a data base that is a ‘close’ match to a 
given query sequence: 

TCCGCGCTGCAAG…

CCGGGGCGCCCT…

ACCTGCGGGGCG…

GGCGAGGCAGGC…

GGACCCAGCTCT…

AGCCCGAGTCCC…

CCCGCGGCCCCG…

CCCCCCGCTCTC…

GCAATCTGCATG…

GCCCTCCGTACC…

GCGGCCTCAGCC…

  
    .

  
    .

  
    .


? CCCGCGGCCCCGAT…




•  Used, for example, to identify homologous genes or 
proteins in one species or genes related by a common 
ancestor in different species 

•  Don’t just want to know whether sequences are 
related, but need a measure of similarity (or 
dissimilarity) 

•  Assign a p-value based on a null hypothesis that two 
sequences being compared are unrelated 

•  Simplest null hypothesis is that the sequences are 
strings of independently and identically distributed 
letters from a given alphabet 



In biology, the most commonly used 
algorithms for sequence comparison are 
alignment-based algorithms, e.g. BLAST. 
    (Basic Local Alignment Search Tool)   



BLAST looks for long alignments and relies on the 
theory of random walks: 
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Score +1 for a match; –1 for a mismatch 



BLAST looks for long alignments and relies on the 
theory of random walks: 
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Score +1 for a match; –1 for a mismatch 

Large upward excursion = ‘good’ alignment 

Similarity measure is the highest “upward excursion” 



Alignment-based sequence comparisons assume 
contiguity between related sequences.  But the process of 
evolution may involve rearrangements of sections of the 
genome, and the process of translating genes to proteins 
may involve alternate deletions and splicings  

The assumption of contiguity is not always appropriate! 



Alignment-free methods: 
There are many (distance methods, covariance 

methods, information theory based measures, 
angle metrics, …) 

We have been studying 
 k-word matches and the D2 statistic  



Definition: Given two sequences  
A = (A1, A2, …, Am) and B = (B1, B2, …, Bn),  
D2 is the number of matches of words (including 

overlaps) of prespecified length k between two given 
sequences 



A: 

B: 

Example: consider these two sequences and k = 7 … 
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A: 

B: 

In this example, for  k = 7,  D2 = 3 

Definition: Given two sequences  
A = (A1, A2, …, Am) and B = (B1, B2, …, Bn),  
D2 is the number of matches of words (including 

overlaps) of prespecified length k between two given 
sequences 

Example: consider these two sequences and k = 7 … 



Also of interest is the approximate word count: 
Definition: Given two sequences  
A = (A1, A2, …, Am) and B = (B1, B2, …, Bn),  
D2

(t) is the number of matches of words of prespecified 
length k with up to t mismatches 



Also of interest is the approximate word count: 
Definition: Given two sequences  
A = (A1, A2, …, Am) and B = (B1, B2, …, Bn),  
D2

(t) is the number of matches of words of prespecified 
length k with up to t mismatches 

A: 

B: 

In this example, for  k = 7, t = 1,   D2 = 5 



Performance: 

For sequences of length m and n,  

•  D2 has algorithmic complexity O(m + n) …fast! 
•  D2

(t) is at worst O(m*n)  … somewhat slower 

But to assess whether a match is significant, we need 
knowledge of the distribution of these measures 
under a suitable null hypothesis 



What do we know about the distribution of D2 and D2
(t) ? 

Although we do not have an exact formula for the 
distribution of D2, we are able to derive for sequences of 
i.i.d. letters 

•  The means  E(D2) and E(D2
(t))  

•  The variance Var(D2) and, for a uniform letter distribution 
Var(D2

(t))  
•  A fast, accurate numerical algorithm for Var(D2

(t)) for a non-
uniform letter distribution 

•  The limiting distribution of D2 as the sequence length n → ∞ for k 
< 1/2 log n or k > 2 log n  

•  The limiting distribution of D2 
(t)

 as the sequence length n → ∞ for 
k < 1/2 log n 

•  An accurate empirical fit to the distribution for bilogically 
relevant values of n, k and t. 



Mean of D2 for i.i.d. sequences (Waterman, 1995): 

i 

j 

m 

n 
Let probability of letter at given site be  fa, a ∈ {C, A, G, T} 

Set indicator variable Yij = 1 if k-word at i matches k-word at j,  
    0 otherwise 

Then  E(Yij) = Prob(Yij = 1) = (∑a fa
2)k , so 

E(D2) = E(∑i,j Yij) = ∑i,j E(Yij) = (m - k + 1)(n - k + 1) (∑a fa
2)k  

k 



The variance of D2 is much harder: 

€ 

Var D2( ) =Var Yij
i, j
∑
 

 
  

 

 
  = E Yij

i, j
∑
 

 
  

 

 
  

2 

 

 
 

 

 

 
 
− E Yij

i, j
∑
 

 
  

 

 
  

 

 
 
 

 

 
 
 

2

= Cov Yij ,Yi' j '( )
i, j;i', j '
∑ −µD2

2

i 

j 

i’ 

j’ 

but Cov(Yij,Yi’j’) is difficult to calculate when there are 
overlaps 
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To calculate Cov Yij ,Yi' j '( ) = Cov Yu,Yv( ),  where u = (i, j), v = (i', j '),

write the dependency neighbourhood as Ju = Ju
a + Ju
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And further divide the 
accordion into diagonal 
and off-diagonal pieces 



Crabgrass Diagonal 
Accordion 

Off-diag 
Accordion 

Exact matches, 
Uniform letter 
distribution 

0 Analytic 
formula 

0 

Exact matches, 
Non-uniform 
distribution 

Analytic 
formula 

Analytic 
formula 

Analytic 
formula 

Approx. matches, 
Uniform letter 
distribution 

0 Analytic 
formula 

0 

Approx. matches, 
Non-uniform 
distribution 

Analytic 
formula 

Numerical look-up table 
in parameters k, t and fa 

For practical purposes, we can calculate all contributions to 
the covariance: 



So we can calculate the mean and 
variance of D2 and D2 

(t) for any set 
of parameters n, m, k, t and fa 

But what about the shape of the 
distribution 



Have proved theorems for the limiting distributions as n or k → ∞:  

(Limits taken along lines  k = const.logbn, where  b = (∑afa
2)-1 ) 



Numerical experiments to determine  
optimal word size k 

r(γ), γ = 1, …, 100 
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A = r(γ) − γ( )2
γ=1
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BLAST 

Sequence length  n = 600 
Uniform letter distribution 



Optimum word sizes 



Optimum word sizes 

For biologically relevent 
parameter values, optimal 
word sizes fall outside 
known limiting cases 



→ Numerical simulations to examine the distribution of D2 
under the assumption of an i.i.d. letter distribution for 
biologically relevant parameter values:  



Empirical distribution fits well to 
a Beta distribution with 
analytically determined E(D2) 
and Var(D2)… 

D2 quantiles,  n = 400, k = 8 
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Empirical distribution fits well to 
a Beta distribution with 
analytically determined E(D2) 
and Var(D2)… 

…but for accurate p-values the 
tail of the distribution is 
important. 

→  Measure discrepancy between 
hypothesised (assuming e.g. 
Normal or Gamma) and 
empirical p-values:  

Theoretical quantile 
(phyp = 5%, 1%, 0.1%, …) 

Empirical level pemp 

€ 

δ = log10 pemp phyp( )



Normal Beta 
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pemp = 0.01

€ 

pemp = 0.01

€ 

pemp = 0.0001

€ 

pemp = 0.0001
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δ = log10 pemp phyp( ) : -3  -2  -1  0   1  2   3 



Normal Beta 

€ 

pemp = 0.01

€ 

pemp = 0.01

€ 

pemp = 0.0001

€ 

pemp = 0.0001

€ 

δ = log10 pemp phyp( ) : -3  -2  -1  0   1  2   3 

Hypothesised Normal 
distribution for D2 leads to 
underestimating p-values 
(i.e. overestimating 
significance)  

Hypothesised Beta 
distribution for D2 leads to 
overestimating p-values (i.e. 
underestimating 
significance)  



Database test (using database from Kantorowitz, et  al., Bioinf. 23 249 (2007)): 
2 sets of sequences:  

•  positive control – a set of 
known cis- regulatory 
modules (mouse or human) 

CACAAGATGAGAAGTTGTGTACTTG 
GCAAACTTAGAGCTGACCTTTGCTGATTTG 
GAAGTTGAAGATTACCCAACCATTGCA 
GGTTTATCAGTTCTTTCTTGTTTAT 
AGGTTGAGTTAATCATA 
AGAAACAAAACCTACATGACCCTT 
CTCTTGTTTTTTTATTCATTC 
ACTGCCAAGAAGC 
ATGCCAAAGTTAATCATTGG 
CCCTGCTGAGTACATGGCCGATCAGGC 
TGTTTTTGTGTGCCTGTTTTTCTATTTTAC 
GTAAATCACCCTGAACATGTTTGCATCAAC 
CTACTGGTGATGCACCTTTGATCAA 
… 
… 



•  positive control – a set of 
known cis- regulatory 
modules (mouse or human) 

•  negative control – a set of 
sequences of same length 
chosen randomly from non-
coding part of genome 

CACAAGATGAGAAGTTGTGTACTTG 
GCAAACTTAGAGCTGACCTTTGCTGATTTG 
GAAGTTGAAGATTACCCAACCATTGCA 
GGTTTATCAGTTCTTTCTTGTTTAT 
AGGTTGAGTTAATCATA 
AGAAACAAAACCTACATGACCCTT 
CTCTTGTTTTTTTATTCATTC 
ACTGCCAAGAAGC 
ATGCCAAAGTTAATCATTGG 
CCCTGCTGAGTACATGGCCGATCAGGC 
TGTTTTTGTGTGCCTGTTTTTCTATTTTAC 
GTAAATCACCCTGAACATGTTTGCATCAAC 
CTACTGGTGATGCACCTTTGATCAA 
… 
… 

TTTTAGACATTGTGTAGAAGAGTTG 
GGTAACTTAGAGCTGACCTTTGCTGATTTG 
GTTTATTACCCGAAGTTAACGTTTGCA 
TATTTATGTGTTCTTTCTTGTTTATC 
ATGTAAAGTTAATCATA 
ATTTTCAAAACCTAGTTGACCCTT 
CTATGGACTGGTACTCATTC 
TTCGCGTAGAAGC 
CAGATGCGCCAAAGTTAATG 
CGCTGCTGAGTACATGGCCGATGTTAC 
TCATTCAGTGTGCCTGTTTTTCTATTTTAC 
TGAGTCCACCCTGAAGTTGTTTGCATGTAC 
TGCACCTTTGATGTACTACTGGTGA 
… 
… 

Database test (using database from Kantorowitz, et  al., Bioinf. 23 249 (2007)): 
2 sets of sequences:  



•  chose each sequence in turn as the ‘query sequence’.  Attempt to 
classify it as positive or negative control as follows 

+ − 
CACAAGATGAGAAGTTGTGTACTTG 
GCAAACTTAGAGCTGACCTTTGCTGATTTG 
GAAGTTGAAGATTACCCAACCATTGCA 
GGTTTATCAGTTCTTTCTTGTTTAT 
AGGTTGAGTTAATCATA 
AGAAACAAAACCTACATGACCCTT 
CTCTTGTTTTTTTATTCATTC 
ACTGCCAAGAAGC 
ATGCCAAAGTTAATCATTGG 
CCCTGCTGAGTACATGGCCGATCAGGC 
TGTTTTTGTGTGCCTGTTTTTCTATTTTAC 
GTAAATCACCCTGAACATGTTTGCATCAAC 
CTACTGGTGATGCACCTTTGATCAA 
… 
… 

TTTTAGACATTGTGTAGAAGAGTTG 
GGTAACTTAGAGCTGACCTTTGCTGATTTG 
GTTTATTACCCGAAGTTAACGTTTGCA 
TATTTATGTGTTCTTTCTTGTTTATC 
ATGTAAAGTTAATCATA 
ATTTTCAAAACCTAGTTGACCCTT 
CTATGGACTGGTACTCATTC 
TTCGCGTAGAAGC 
CAGATGCGCCAAAGTTAATG 
CGCTGCTGAGTACATGGCCGATGTTAC 
TCATTCAGTGTGCCTGTTTTTCTATTTTAC 
TGAGTCCACCCTGAAGTTGTTTGCATGTAC 
TGCACCTTTGATGTACTACTGGTGA 
… 
… 



•  chose each sequence in turn as the ‘query sequence’.  Attempt to 
classify it as positive or negative control as follows 

•  measure D2
(t) between query and all other sequences 

+ − 
CACAAGATGAGAAGTTGTGTACTTG 
GCAAACTTAGAGCTGACCTTTGCTGATTTG 
GAAGTTGAAGATTACCCAACCATTGCA 
GGTTTATCAGTTCTTTCTTGTTTAT 
AGGTTGAGTTAATCATA 
AGAAACAAAACCTACATGACCCTT 
CTCTTGTTTTTTTATTCATTC 
ACTGCCAAGAAGC 
ATGCCAAAGTTAATCATTGG 
CCCTGCTGAGTACATGGCCGATCAGGC 
TGTTTTTGTGTGCCTGTTTTTCTATTTTAC 
GTAAATCACCCTGAACATGTTTGCATCAAC 
CTACTGGTGATGCACCTTTGATCAA 
… 
… 

TTTTAGACATTGTGTAGAAGAGTTG 
GGTAACTTAGAGCTGACCTTTGCTGATTTG 
GTTTATTACCCGAAGTTAACGTTTGCA 
TATTTATGTGTTCTTTCTTGTTTATC 
ATGTAAAGTTAATCATA 
ATTTTCAAAACCTAGTTGACCCTT 
CTATGGACTGGTACTCATTC 
TTCGCGTAGAAGC 
CAGATGCGCCAAAGTTAATG 
CGCTGCTGAGTACATGGCCGATGTTAC 
TCATTCAGTGTGCCTGTTTTTCTATTTTAC 
TGAGTCCACCCTGAAGTTGTTTGCATGTAC 
TGCACCTTTGATGTACTACTGGTGA 
… 
… 



•  chose each sequence in turn as the ‘query sequence’.  Attempt to 
classify it as positive or negative control as follows 

•  measure D2
(t) between query and all other sequences 

•  convert D2
(t) values to (i.i.d.) null hypothesis p-values 

•  smallest p-value determines whether query belongs to positive or 
negative control 

+ − 
CACAAGATGAGAAGTTGTGTACTTG 
GCAAACTTAGAGCTGACCTTTGCTGATTTG 
GAAGTTGAAGATTACCCAACCATTGCA 
GGTTTATCAGTTCTTTCTTGTTTAT 
AGGTTGAGTTAATCATA 
AGAAACAAAACCTACATGACCCTT 
CTCTTGTTTTTTTATTCATTC 
ACTGCCAAGAAGC 
ATGCCAAAGTTAATCATTGG 
CCCTGCTGAGTACATGGCCGATCAGGC 
TGTTTTTGTGTGCCTGTTTTTCTATTTTAC 
GTAAATCACCCTGAACATGTTTGCATCAAC 
CTACTGGTGATGCACCTTTGATCAA 
… 
… 

TTTTAGACATTGTGTAGAAGAGTTG 
GGTAACTTAGAGCTGACCTTTGCTGATTTG 
GTTTATTACCCGAAGTTAACGTTTGCA 
TATTTATGTGTTCTTTCTTGTTTATC 
ATGTAAAGTTAATCATA 
ATTTTCAAAACCTAGTTGACCCTT 
CTATGGACTGGTACTCATTC 
TTCGCGTAGAAGC 
CAGATGCGCCAAAGTTAATG 
CGCTGCTGAGTACATGGCCGATGTTAC 
TCATTCAGTGTGCCTGTTTTTCTATTTTAC 
TGAGTCCACCCTGAAGTTGTTTGCATGTAC 
TGCACCTTTGATGTACTACTGGTGA 
… 
… 



Percentage of times (+ve) query sequence is correctly classified 
using minimum p-value 



Conclusions 
•  The k-word count D2 is a fast and accurate 

statistic for sequence comparison when 
alignments are not appropriate 

•  Approximate word count D2
(t) is slower to 

calculate, but more accurate, and more 
appropriate for some applications 

•  Mean and variance of D2 and D2
(t) can be 

computed easily (analytic result for D2) 
•  The Beta distribution gives a good empirical 

estimate of p-values for D2, and for its extreme 
value distribution 
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