Diversification in Space and Time:

Using phylogenies to understand the formation of species assemblages

Rob Lanfear and Lindell Bromham

Centre for Macroevolution and Macroecology Research School of Biology Australian National University rob.lanfear@anu.edu.au

Why Care?

- 1. How do species assemblages form?
- 2. What are the properties of colonising lineages?
- 3. Do colonisation rates decline over time?
- 4. Are colonisation and speciation rates independent?

'species assemblage' is a neutral term for the species found in a defined location

What can phylogenies do for us?

What can phylogenies do for us?

1. Tell us when in-situ diversification events and colonisation events happened

2. Allow us to compare different models of colonisation and diversification

Work in progress*

Null Models

Expected arrival rate of extant species, with diversification, but no colonisation or extinction

Null Models

Expected arrival rate of extant species, with constant diversification rate, variable extinction rates, and no colonisation

What can phylogenies tell us about these processes?

Species Arrival

What can molecular phylogenies tell us about these processes?

2. Colonisation times

3. Node heights

4. Ancestral states

- 1. Topology 🖌
- 2. Node Heights

1

- 3. Ancestral States
- 4. Colonisation Times

- 1. Topology 🖌
- 2. Node Heights
- 3. Ancestral States 🗸

1

4. Colonisation Times

- 1. Topology 🖌
- 2. Node Heights
- 3. Ancestral States 🗸

1

4. Colonisation Times 🖌

The Method

1. Collect dataset of all members of an assemblage

The Method

- 1. Collect dataset of all members of an assemblage
- 2. Add in phylogenetic nearest neighbours

The Method

- 1. Collect dataset of all members of an assemblage
- 2. Add in phylogenetic nearest neighbours
- 3. Estimate the posterior distribution of the dated phylogeny
- 4. For each tree, probabilistically reconstruct ancestral states
- 5. Reconstruct colonisation and diversification events

Arrival Rate

A single estimate of in-situ diversification rate

401 estimates of in-situ diversification rate

401 estimates of in-situ diversification rate

Colonisation and diversification

Morlon et al, PLoS Genetics, 2010

Morlon et al, PLoS Genetics, 2010

Comparing models of assemblage formation

